FGBU VNIIPO EMERCOM of Russia

scientific-technical journal

Pozharnaya bezopasnost’/FIRE SAFETY

ISSN 2411-3778   eISSN 2782-3199

2020-2_Pages_14-27

УДК 614.841                                                                                             DOI 10.37657/vniipo.2020.99.2.001

 

 

E.S. Kirik, K.Yu. Litvintsev, A.A. Tumanovskiy, A.Yu. Shebeko

 

CFD SOFTWARE FDS FOR FIRE SIMULATION AND ITS APPLICATION FOR FIRE RISK ASSESSMENT

Abstract. The article deals with fire spread simulations by CFD-method using software package FDS version 5 and 6. There is systematically compared a number of configuration parameters of the software package to show how the default configuration parameters derive deviate solution from solution under the fire risk assessment methodology [1, 2] driven settings. The expected (control) results are calculated using FDS software by tweaking the configuration parameters to match the local fire risk assessment methodology [1, 2]. There are shown the worked out examples illustrating the difference in the gas dynamics subject to configuration settings when the default configuration parameters do not match the methodology.

The characteristics of the physical phenomena subject to configuration parameters were discussed. There is derived the difference between times when the critical value for visibility distance is reached under the default value of visibility factor and methodology-driven visibility factor. There are given dramatically different numerical results using the isothermal (the default) and adiabatic (methodology-driven) boundary conditions for the heat transfer through walls. It is shown that the gas flows are too slow under the isothermal boundary conditions, and the dangerous fire factors reach its critical values much slower in comparison with the solution under the adiabatic boundary conditions. It is proved that the thermophysical characteristics of the fire process predicted by the FDS subject to its default configuration settings do not match the methodology and the reason is connected with a method to input data concerning thermal parameters (heat release rate, mass loss rate, heat of combustion). The numerical realization of the FDS does not simulate the fire from the first time steps of the simulation process (heat release rate and other fire parameters are equal zero). There is presented the formula for calculating the moment when the simulated fire begins. It is time to start evacuation.

 

Keywords: CFD fire simulation, fire risk assessment, boundary conditions, burn material, mass loss rate, heat release rate, dangerous fire factors

 

References

  1. Metodika opredeleniya raschetnyh velichin pozharnogo riska na proizvodstvennyh obyektah [Method of determining the estimated values of fire risk at manufacturing entities]. Approved by the Order of EMERCOM of Russia, nо. 404, dated July 10, 2009, the changes approved by the Order of EMERCOM of Russia, nо. 649, dated December 14, 2010. (In Russian).
  2. 2. Metodika opredeleniya raschetnyh velichin pozharnogo riska v zdaniyah, sooruzheniyah i stroeniyah razlichnyh klassov funkzionalniy pozharnoy opasnosti [Method of determining the estimated values of fire risk in buildings, constructions and structures of various classes of functional fire danger]. Approved by the Order of EMERCOM of Russia, no. 382, dated July 30, 2009, the changes approved by Orders of EMERCOM of Russia, nо. 749, dated December 12, 2011 and no. 632, dated December 02, 2015. (In Russian).
  3. Litvintsev К. Yu., Kirik E. S., Yagodka E.A. Problems of numerical simulation in connection with fire risk assessment. Vichislitel’nie technologii Computational Technologies, 2019, vol. 24, no. 4, рр. 56–69. (In Russian).
  4. McGrattan, Kevin, et al. Fire Dynamics Simulator (version 5) User’s Guide. Gaithersburg, Maryland, USA: s.n., October 2010. NIST Special Publication 1019-5.
  5. McGrattan, Kevin, et al. Fire Dynamics Simulator (version 6) User’s Guide. Gaithersburg, Maryland, USA : s.n., November 2013. NIST Special Publication 1019.
  6. Mulholland G.W. SFPE Handbook of Fire Protection Engineering, Chapter Smoke Production and Properties. National Fire Protection Association, Quincy, Massachusetts, 3rd edition, 2002, 163 p.
  7. Koshmarov Y.A. Prognozirovanie opasnyh faktorov pozhara v pomeshhenii [Prediction of dangerous fire factors in the room]. Mosсow, State Fire Academy Publ., 2000, 120 p. (In Russian).
  8. Molchadskiy I.S. Pozhar v pomeshhenii [Fire in the room]. Moscow, VNIIPO, 2005, 456 p. (In Russian).
  9. Kar'kin I.N., Kontar' N.A., Grachev V.Yu. SITIS 4-11. FDS guide with PyroSim 2010-2 and SmokeView. 2011. Available at: http://fds.sitis.ru/forum/download.php?id=13 (accessed 30.01.2019).
  10. Kar'kin I.N. Guide for the FireCat software. Available at: https://www.pyrosim.ru/download/\verb"Firecat_FDS_fireload_lib.pdf" (accessed 30.01.2019).
  11. Guan H.Y., Kwok K.Y. Computational Fluid Dynamics in Fire Engineering — Theory, Modelling and Practice Butterworth-Heinemann, Elsevier Science and Technology, 2009, 530 p.
  12. Abashkin A.A., Karpov A.V., Ushakov D. V., Fomin M. V., Giletich A. Ch., Komkov P. M. Metodiki opredelenija raschetnyh velichin pozharnogo riska v zdanijah, sooruzhenijah i pozharnyh otsekah razlichnyh klassov funkcional'noj pozharnoj opasnosti [Application guide for fire risk code for buildings]. Moscow, VNIIPO, 2014, 83 p. (In Russian).

 

 

Received February 17, 2020

 

Authors:

Ekaterina S. Kirik – Candidate of Physical and Mathematical Sciences, Senior Researcher. E-mail: kirik@icm.krasn.ru.

Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences (ICM SB RAS), Krasnoyarsk, Russia.

 

Kirill Yu. Litvintsev – Candidate of Physical and Mathematical Sciences, Senior Researcher. Phone: (913) 528-59-26. E-mail: sttupick@yandex.ru.

Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences (IT SB RAS),
Novosibirsk, Russia.

 

Artur A. Tumanovskiy – Candidate of Technical Sciences, Head of Department. Phone: (812) 336-48-13. E-mail: supertwain@qmail.ru.

Saint-Petersburg University of State Fire Service of EMERCOM of Russia, Saint-Petersburg, Russia.

 

Aleksey Yu. Shebeko – Head of Department, Doctor of Technical Sciences. Phone: (985) 966-76-04. Е-mail: ay_shebeko@mail.ru.

All-Russian Research Institute for Fire Protection (VNIIPO), the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM of Russia),
Balashikha, Moscow region, Russia.

 

Last issues
Contacts
Address of the Editorial Staff:

mkr. VNIIPO, 12, Balashikha, Moscow region, 143903, Russia


Phones
+7 (495) 521-87-27 (Editor-in-chief), +7 (495) 521-78-59 (Editorial Staff)
Email
vniipo@vniipo.ru vniipo_onti@vniipo.ru


Количество выделенной памяти: 7 Mb
Страница сгенерирована за 0.262564 сек.